Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 170: 108072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301518

RESUMO

The scarcity of annotated data is a common issue in the realm of heartbeat classification based on deep learning. Transfer learning (TL) has emerged as an effective strategy for addressing this issue. However, current TL techniques in this realm overlook the probability distribution differences between the source domain (SD) and target domain (TD) databases. The motivation of this paper is to address the challenge of labeled data scarcity at the model level while exploring an effective method to eliminate domain discrepancy between SD and TD databases, especially when SD and TD are derived from inconsistent tasks. This study proposes a multi-module heartbeat classification algorithm. Initially, unsupervised feature extractors are designed to extract rich features from unlabeled SD and TD data. Subsequently, a novel adaptive transfer method is proposed to effectively eliminate domain discrepancy between features of SD for pre-training (PTF-SD) and features of TD for fine-tuning (FTF-TD). Finally, the adapted PTF-SD is employed to pre-train a designed classifier, and FTF-TD is used for classifier fine-tuning, with the objective of evaluating the algorithm's performance on the TD task. In our experiments, MNIST-DB serves as the SD database for handwritten digit image classification task, MIT-DB as the TD database for heartbeat classification task. The overall accuracy of classifying heartbeats into normal heartbeats, supraventricular ectopic beats (SVEBs), and ventricular ectopic beats (VEBs) reaches 96.7 %. Specifically, the sensitivity (Sen), positive predictive value (PPV), and F1 score for SVEBs are 0.802, 0.701, and 0.748, respectively. For VEBs, Sen, PPV, and F1 score are 0.976, 0.840, and 0.903, respectively. The results indicate that the proposed multi-module algorithm effectively addresses the challenge labeled data scarcity in heartbeat classification through unsupervised learning and adaptive feature transfer methods.


Assuntos
Aprendizado de Máquina não Supervisionado , Complexos Ventriculares Prematuros , Humanos , Frequência Cardíaca , Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos
2.
J Interv Card Electrophysiol ; 67(3): 457-470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37097585

RESUMO

BACKGROUND: Premature ventricular contraction (PVC) is a type of cardiac arrhythmia that originates from ectopic pacemaker in the ventricles. The localization of the origin of PVC is essential for successful catheter ablation. However, most studies on non-invasive PVC localization focus on elaborate localization in specific regions of the ventricle. This study aims to propose a machine learning algorithm based on 12-lead electrocardiogram (ECG) data that can improve the accuracy of PVC localization in the whole ventricle. METHODS: We collected 12-lead ECG data from 249 patients with spontaneous or pacing-induced PVCs. The ventricle was divided into 11 segments. In this paper, we propose a machine learning method consisting of two consecutive classification steps. In the first classification step, each PVC beat was labeled to one of the 11 ventricular segments using six features, including a newly proposed morphological feature called "Peak_index." Four machine learning methods were tested for comparative multi-classification performance and the best classifier result was kept to the next step. In the second classification step, a binary classifier was trained using a smaller combination of features to further differentiate segments that are easily confused. RESULTS: The Peak_index as a proposed new classification feature combined with other features is suitable for whole ventricle classification by machine learning methods. The test accuracy of the first classification reached 75.87%. It is shown that a second classification for confusable categories can improve the classification results. After the second classification, the test accuracy reached 76.84%, and when a sample classified into adjacent segments was considered correct, the test "rank accuracy" was improved to 93.49%. The binary classification corrected 10% of the confused samples. CONCLUSION: This paper proposes a "two-step classification" method to localize the origin of PVC beats into the 11 regions of the ventricle using non-invasive 12-lead ECG. It is expected to be a promising technique to be used in clinical settings to help guide ablation procedures.


Assuntos
Ablação por Cateter , Complexos Ventriculares Prematuros , Humanos , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/cirurgia , Eletrocardiografia/métodos , Ventrículos do Coração , Algoritmos
3.
Front Physiol ; 13: 1030307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425294

RESUMO

Catheter ablation has become an important treatment for atrial fibrillation (AF), but its recurrence rate is still high. The aim of this study was to predict AF recurrence using a three-dimensional (3D) network model based on body-surface potential mapping signals (BSPMs). BSPMs were recorded with a 128-lead vest in 14 persistent AF patients before undergoing catheter ablation (Maze-IV). The torso geometry was acquired and meshed by point cloud technology, and the BSPM was interpolated into the torso geometry by the inverse distance weighted (IDW) method to generate the isopotential map. Experiments show that the isopotential map of BSPMs can reflect the propagation of the electrical wavefronts. The 3D isopotential sequence map was established by combining the spatial-temporal information of the isopotential map; a 3D convolutional neural network (3D-CNN) model with temporal attention was established to predict AF recurrence. Our study proposes a novel attention block that focuses the characteristics of atrial activations to improve sampling accuracy. In our experiment, accuracy (ACC) in the intra-patient evaluation for predicting the recurrence of AF was 99.38%. In the inter-patient evaluation, ACC of 3D-CNN was 81.48%, and the area under the curve (AUC) was 0.88. It can be concluded that the dynamic rendering of multiple isopotential maps can not only comprehensively display the conduction of cardiac electrical activity on the body surface but also successfully predict the recurrence of AF after CA by using 3D isopotential sequence maps.

4.
Front Physiol ; 12: 641358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716789

RESUMO

Pace mapping is commonly used to locate the origin of ventricular arrhythmias, especially premature ventricular contraction (PVC). However, this technique relies on clinicians' ability to rapidly interpret ECG data. To avoid time-consuming interpretation of ECG morphology, some automated algorithms or computational models have been explored to guide the ablation. Inspired by these studies, we propose a novel model based on spatial and morphological domains. The purpose of this study is to assess this model and compare it with three existing models. The data are available from the Experimental Data and Geometric Analysis Repository database in which three in vivo PVC patients are included. To measure the hit rate (A hit occurs when the predicted site is within 15 mm of the target) of different algorithms, 47 target sites are tested. Moreover, to evaluate the efficiency of different models in narrowing down the target range, 54 targets are verified. As a result, the proposed algorithm achieves the most hits (37/47) and fewest misses (9/47), and it narrows down the target range most, from 27.62 ± 3.47 mm to 10.72 ± 9.58 mm among 54 target sites. It is expected to be applied in the real-time prediction of the origin of ventricular activation to guide the clinician toward the target site.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 349-352, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018000

RESUMO

Premature ventricular contraction (PVC) is associated to the risk of ventricular dysfunction and cardiovascular events. Its diagnosis depends on a long-time monitoring, and computational tools for PVC recognition can provide significant assistance to specialists. For this purpose, we present an automatic algorithm for the recognition PVC beat based on long-term 12-lead ECG.A total of 249 patients with PVC were included in this study. Initially, a novel QRS onset detection function was used to automatically extract QRS complexes from massive original ECG data. Then, non-personalized but shared QRS-width features of 12-lead QRS complexes were extracted and fed to a binary classifier based on SVM. In order to verify the model, 17, 512 normal beats and 17, 690 PVC beats extracted from 35 patients were used for training, and another 215 normal beats and 291 PVC beats selected randomly from the remaining 214 patients were used for testing.As a result, the achieved accuracy, sensitivity, specificity in training data and testing data are 98.9%, 98.3%, 99.5% and 97.2%, 97.7%, 96.7%, respectively. The high accuracy of PVC recognition makes it promising to be an efficient technique being used in clinical settings to automatically analyze huge ECG data so as to replace the tedious manual interpretation.


Assuntos
Complexos Ventriculares Prematuros , Algoritmos , Eletrocardiografia , Humanos , Sensibilidade e Especificidade , Complexos Ventriculares Prematuros/diagnóstico
6.
Physiol Meas ; 41(5): 055007, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32252035

RESUMO

OBJECTIVE: The localization of origins of premature ventricular contraction (PVC) is the key factor for the success of ablation of ventricular arrhythmias. Existing methods rely heavily on manual extraction of PVC beats, which limits their application to the automatic PVC recognition from long-term data recorded by ECG monitors before and during operation. In addition, research identifying PVC sources in the whole ventricle have not been reported. The purpose of this study was to validate the feasibility of localization of origins of PVC in the whole ventricle and to explore an automatic algorithm for recognition of PVC beats based on long-term 12-lead ECG. APPROACH: This study included 249 patients with spontaneous PVCs or pacing-induced PVCs. A novel algorithm was used to automatically extract PVC beats from a massive amount of original ECG data, which was collected by different acquisition devices. After clustering and labelling, 374 sample groups, each containing dozens to hundreds of PVC beats, formed the entire dataset of 11 categories corresponding to 11 regions of PVC origins in the whole ventricle. To choose the best classification model for the current task, four machine learning methods, support vector machine (SVM), random forest (RF), gradient-boosting decision tree (GBDT) and Gaussian naïve Bayes (GNB), were compared by randomly selecting 70% of the entire dataset (sample groups = 257) for training and the remaining 30% (sample groups = 117) for testing. The average performance of each model was estimated by the bootstrap method using 1000 resampling trials. MAIN RESULTS: For PVC beat recognition, the achieved testing accuracy, sensitivity and specificity is 97.6%, 98.3% and 96.7%, respectively. For localization purpose, the achieved testing accuracy varies slightly from 70.7% to 74.1% among four classifiers, and when neighboring regions were combined, the testing rank accuracy is improved to a range of 91.5% to 93.2%. SIGNIFICANCE: The proposed algorithm can automatically recognize PVC beats and map them to one of the 11 regions in the whole ventricle. Owing to the high accuracy of PVC beat recognition and the capability to target the potential PVC origins in multi regions, it is expected to be a predominant technique being used in clinical settings to automatically analyze huge ECG data before and during operation so as to replace the tedious manual identification.


Assuntos
Eletrocardiografia , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/fisiopatologia , Automação , Humanos
7.
ACS Omega ; 4(21): 19238-19245, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763547

RESUMO

A strategy for the preparation of bioactive poly-ether-ether-ketone/hydroxyapatite (PEEK/HA) composites was proposed in this study with the aim of controlling the biological and mechanical properties of different parts of the composites. The strategy integrated solvent-based extrusion freeforming 3D printing technology in order to print high-resolution HA scaffolds and compression molding processes for the production of bioactive PEEK/HA composites. To this end, an optimized model, established using response surface methodology, was employed to optimize the extrusion process parameters on the basis of accurate characterization of the extrusion pressure, and the effects of the filament/pore sizes on the PEEK infiltration depth into the HA scaffold were investigated. The results of scanning electron microscopy and computed tomography analyses revealed that the PEEK/HA composites exhibited a uniform microstructure and a good interface between the HA filaments and the PEEK matrix following the optimization of the process parameters. The HA scaffolds were fully infiltrated by PEEK in both vertical and lateral directions with an infiltration depth of 3 mm while maintaining the HA network structure and uniformity. The biological and mechanical performance test results validated that the PEEK/HA composites possessed excellent biocompatibility as well as yields and compressive strengths within the range of human cortical bone suitable for load-bearing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...